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ABSTRACT

Context. The chromosphere is a partially ionized layer of the solar atmosphere, the transition between the
photosphere where the gas is almost neutral and the fully ionized corona. As the collisional coupling between
neutral and charged particles decreases in the upper part of the chromosphere, the hydrodynamical timescales
may become comparable to the collisional timescale, and a two-fluid model is needed.
Aims. In this paper we describe the implementation and validation of a two-fluid model which simultaneously
evolves charges and neutrals, coupled by collisions.
Methods. The two-fluid equations are implemented in the fully open-source MPI-AMRVAC code. In the photo-
sphere and the lower part of the solar atmosphere, where collisions between charged and neutral particles are
very frequent, an explicit time-marching would be too restrictive, since for stability the timestep needs to
be proportional to the inverse of the collision frequency. This is overcome by evaluating the collisional terms
implicitly using an explicit-implicit (IMEX) scheme. Out of the various IMEX variants implemented, we focus
here on the IMEX-ARS3 scheme, used for all simulations presented in this paper. The modular structure of
the code allows to directly apply all other code functionality - in particular its automated grid adaptivity -
to the two-fluid model.
Results. Our implementation recovers and significantly extends available (analytic or numerical) test results
for two-fluid charge-neutral evolutions. We demonstrate wave damping, propagation and interactions in strat-
ified settings, Riemann problems for coupled plasma-neutral mixtures, generalize a shock-dominated evolution
from single to two-fluid regimes, and make contact with recent findings on typical plasma-neutral instabilities.
Conclusions. The cases presented cover very different collisional regimes and our results are fully consistent
with related literature findings. If collisional time and length scales are smaller than the hydrodynamical scales
usually considered in the solar chromosphere, density structures seen in the neutral and charged fluids are
similar, with the effect of elastic collisions between charges and neutrals being similar to diffusivity. Otherwise,
density structures are different and the decoupling in velocity between the two species increases, and neutrals
may e.g. show Kelvin-Helmholtz roll-up while charges do not. The use of IMEX schemes efficiently avoids the
small timestep constraints of fully explicit implementations in strongly collisional regimes. Adaptive Mesh
Refinement (AMR) greatly decreases the computational cost, compared to uniform grid runs at the same
effective resolution.

1. Introduction

The solar chromosphere is a very dynamic layer of the
solar atmosphere. It forms the transition between the
dense photosphere with a very low ionization fraction
and where the gas pressure is larger than the mag-
netic pressure, to the very hot, fully ionized corona
dominated by magnetic fields. In the corona of the
quiet sun, above the transition region located at ≈
2.5 Mm, the plasma is fully ionized (O’Flannagain
et al. 2015). While a single fluid magnetohydrodynamic
(MHD) model for solar plasma applies fully as we
reach coronal conditions, the coupling between charged
species and the neutrals varies drastically throughout
the lower solar atmosphere. Because the density drops
with height, the collisional coupling between neutrals
and charges decreases. At high collisional frequency,
the plasma behaves like a single fluid, so the high colli-
sional frequency near the photosphere again assures an
MHD-like behavior. On time scales much smaller than
ion-neutral collision time (or equivalently, on length

scales much smaller than the mean free path between
ions and neutrals), the ions and neutrals can be consid-
ered completely decoupled and the two species evolve
independently. However, in an intermediate coupling
regime, the collisions cannot be neglected. Partial ion-
ization effects can also be introduced in a single fluid
model, through ambipolar diffusion using a general-
ized Ohm’s law. This approach has been used in many
astrophysical contexts for the study of protoplanetary
disks (Lesur 2020; Cui & Bai 2021) or molecular clouds
(Wurster et al. 2022). A more advanced model for dy-
namics in partially ionized plasmas must employ a fully
two-fluid model, where there are separate time evolu-
tion equations for neutrals and charged particles (ions,
essentially). This model has also been used in other as-
trophysical contexts, such as analytical study of shocks
in molecular clouds (Draine et al. 1983; Draine & Mc-
Kee 1993).

In the solar atmosphere, the collision frequency
between ions and neutrals drops exponentially with
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height and falls below the ion cyclotron frequency in
the chromosphere, reaching values of 102 s−1 at around
2.1 Mm, just below the transition region (see also Fig-
ure 1 in Khomenko et al. 2014a). Above the transition
region, in the corona, the plasma is almost fully ion-
ized, however the neutrals still play an important role
in coronal structures with chromospheric origins such
as prominences or spicules. The study of partial ioniza-
tion effects is of general importance in astrophysics as
the collisions between neutrals and charged particles
might also have a significant contribution in processes
related to accretion disks, interstellar medium, molec-
ular clouds (see also the review of Soler & Ballester
2022). Here, we will validate a new implementation of
the full two fluid description for plasma-neutral dy-
namics. A wide variety of previous findings can be used
to validate the numerical treatment, going from linear
wave dynamics to shocked plasma-neutral evolutions.

Analytical studies of waves using a two-fluid ap-
proach showed damping of the waves because of the
interaction between charges and neutrals, which in-
creases when the collision frequency approaches the
wave frequency (Zaqarashvili et al. 2011b,a; Soler
et al. 2013a,b; Zaqarashvili et al. 2013; Martínez-
Gómez et al. 2016, 2017; Ballester et al. 2018; Popescu
Braileanu et al. 2019a,b). A single-fluid approach,
where partial ionization effects are introduced through
ambipolar diffusion, also showed damping of waves, es-
pecially for waves which propagate across the magnetic
field (Khomenko & Cally 2019; Popescu Braileanu &
Keppens 2021). Zaqarashvili et al. (2011b) shows that
these two models to study charge-neutral wave propa-
gation, i.e. the single fluid one with ambipolar diffusion
and the two-fluid model, give similar results while col-
lisions between ions and neutrals are frequent, however
large differences appear in a weaker coupling regime.
We will present wave applications relevant for the solar
chromosphere that relate to these findings. Beyond lin-
ear wave applications, studies of shocks in a two-fluid
approach clearly showed shock substructures that do
not appear in the single-fluid assumption (Hillier et al.
2016; Snow & Hillier 2019). We will recover these find-
ings, also extended to Riemann problems that already
pose numerical resolution challenges in a single fluid
MHD approach.

Depending of the hydrodynamical scales consid-
ered, collisions between charges and neutrals might de-
crease or enhance the growth of instabilities and mod-
ify their evolution. Díaz et al. (2012) studied analyti-
cally the classical Rayleigh-Taylor instability (RTI) in
a two fluid approach. This is a linear study where the
authors consider a 1D background consisting of a uni-
form magnetic field and two regions with different uni-
form densities separated by an interface. A 3D pertur-
bation is applied at the interface. They showed that the
linear growth rate obtained can be one or two orders
of magnitude smaller compared to the value in the in-
compressible single-fluid assumption. In simulations of
the RTI in a 2.5D geometry, Popescu Braileanu et al.
(2021a) also find that the interaction between neutrals
and charges decreases the linear growth rate of the in-
stability, the result being similar to Díaz et al. (2012).
In the nonlinear phase, the incomplete collisional cou-
pling can be seen visually as a decrease in contrast in

the snapshot images, compared to a stronger coupling
regime (Popescu Braileanu et al. 2021a,b).

Indirectly, the presence of neutrals might decrease
the growth of RTI because the density contrast at the
interface is smaller when the neutrals are considered.
The study of Arber et al. (2007) of flux emergence in a
3D setup compares the case of fully ionized plasma to
the case of partial ionized plasma, where they include
the partial ionized effects through ambipolar diffusion.
In their simulation, the condition for RTI of having a
heavier fluid on top of a lighter one is created consis-
tently by the flux emergence. Arber et al. (2007) show
that in a fully ionized plasma, more chromospheric ma-
terial is uplifted in the corona, compared to a partial
ionized plasma, therefore, the RTI is suppressed when
the neutrals are included.

On the other hand, in a 2D setup, in different con-
figurations for the magnetic field, with a component
parallel to the direction of the perturbation, Díaz et al.
(2014) remark that neutrals do not feel the stabilizing
effect of the magnetic field on the RTI development.
Khomenko et al. (2014b) used a single-fluid model with
ambipolar diffusion and they found an increase in the
growth rate of RTI by 50% in the simulations that in-
cluded the ambipolar term, compared to the pure MHD
simulations.

The inelastic collisions, related to ioniza-
tion/recombination processes, might also be im-
portant. The neutral fingers resulting from the RTI
produced at the interface between a solar prominence
thread and corona get ionized at the edges while they
enter the much hotter corona (Popescu Braileanu
et al. 2021b). Even if ionization/recombination did
not play any role in the linear growth of the instability
(Popescu Braileanu et al. 2021b), the increase of
charged material at the edge of the fingers might
impact secondary processes, such as reconnection
(Popescu Braileanu et al. in revision). For complete-
ness, all relevant ionization/recombination terms are
implemented as discussed below, but none of the tests
presented in this paper includes them: most of the
reference results from recent literature avoid these
effects as well.

In two-fluid simulations of Kelvin-Helmholtz insta-
bility (KHI), Hillier (2019a) finds that for very short
hydrodynamic timescales all the complex motions are
occurring in the neutral fluid which is decoupled from
the magnetic field and does not feel the Lorentz force.
At larger scales, the fluids become progressively more
coupled. We will make contact with these KHI simula-
tions, where also the use of Adaptive Mesh Refinement
(AMR) and different higher order reconstructions are
illustrated.

Besides the many theoretical motivations to de-
velop a two-fluid simulation tool, there are also obser-
vational proofs of the decoupling in velocity between
neutrals and charges in the solar atmosphere context.
The theoretical model of Gilbert et al. (2002) showed
that neutrals would slip across the magnetic field in
solar prominences, and this has been confirmed by ob-
servations (Gilbert et al. 2007). Direct evidence of this
decoupling was shown by deducing different velocities
from the Doppler shift measured in spectral lines of
ions and neutrals observed simultaneously (Khomenko
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et al. 2015; Khomenko et al. 2016; Anan et al. 2017;
Wiehr et al. 2019). Further evidence of ion-neutral
decoupling was reported by de la Cruz Rodríguez &
Socas-Navarro (2011), who deduced misalignment in
the direction of chromospheric fibrils and the measured
magnetic field vector. Solar spicules, especially type
II, are also highly dynamic structures which evolve
on very small timescales, which might reach the same
order of magnitude as the timescale associated with
elastic collisions between ions and neutrals. Kuźma
et al. (2017) studied solar spicules in a two-fluid ap-
proach, but did not find significant differences be-
tween the neutral and the charged spicule. Still, any
expected decoupling between neutrals and charges oc-
curs at very small spatial scales and the study of two-
fluid effects imposes the need to resolve scales smaller
than the mean free path between ions and neutrals.
Therefore, an extremely high resolution is needed for
the study of two-fluid effects, which can effectively be
met through the use of AMR (Xia et al. 2018). AMR
has been used in many astrophysical contexts to dy-
namically adjust (increase/decrease) the resolution in
certain regions of the grid, and can also be inherited
from an external library such as PARAMESH (Mac-
Neice et al. 2000). Here, we implement the two-fluid
equations as a new physics module in the MPI-AMRVAC
code (http://amrvac.org/), where a native block-
structured AMR is implemented in a robust and ef-
ficient manner. By design, this module is then di-
rectly useful for 1D, 2D and 3D application, in Carte-
sian or other orthogonal coordinate systems (cylindri-
cal/spherical), although we will here show Cartesian
multidimensional setups only.

We present the two-fluid model in Section 2. Re-
sults obtained from numerical simulations which con-
sider very different coupling regimes are given in Sec-
tion 3 and conclusions are listed in Section 4.

2. The two-fluid model

2.1. Governing equations

The two-fluid equations implemented in MPI-AMRVAC
are (see also Popescu Braileanu et al. 2019a),

∂ρn
∂t

+∇ · (ρnvn) = Sn , (1)

∂ρc
∂t

+∇ · (ρcvc) = −Sn , (2)

∂(ρnvn)

∂t
+∇ · (ρnvnvn + pnI) = ρng + Rn , (3)

∂(ρcvc)

∂t
+∇ ·

[
ρcvcvc +

(
pc +

1

2
B2

)
I−BB

]
= ρcg −Rn , (4)

∂etotn

∂t
+∇ ·

[
vn

(
etotn + pn

)]
= ρnvn · g +Mn , (5)

∂etotc

∂t
+∇ ·

[
vc

(
etotc + pc +

1

2
B2

)
−B(vc ·B)

+vHB
2 −B(vH ·B)

]
= ρcvc · g + ηJ2 −Mn , (6)

∂B

∂t
+∇ · [(vc + vH)B−B (vc + vH)] = ηJ. (7)

The above set of Eqs. (1)-(7) is written for conserved
variables: mass densities, momentum and total ener-
gies:

etotc = ec +
1

2
ρcv

2
c +

1

2
B2 ; etotn = en +

1

2
ρnv

2
n . (8)

Eqs. (1)-(7) allow for an external gravitational field
with acceleration g, which appears as a source term at
the right hand side (RHS) of the equations.

Eqs. (1)-(7) are obtained from the multifluid equa-
tions, where three species are considered: ions, elec-
trons and neutral particles. Further, ions and electrons
are combined into the charged fluid with density and
pressure ρc and pc, by assuming that they have the
same temperature and that the center of mass velocity
of the charges is the ions velocity (Popescu Braileanu
et al. 2019a). The collisional source terms Sn, Mn and
Rn at the RHS of Eqs. (1)-(7) are described next, in
subsection 2.2.

The multifluid equations, obtained by taking mo-
ments of Boltzmann’s equation, are closed after the
second moment by prescribing the pressures from the
ideal equation of state, hence pressures relate to inter-
nal energy densities through

pi = (γ − 1)ei , for i=n,c . (9)

The set of equations is closed by further con-
sidering the Maxwell’s equations. We assume non-
relativistic plasma, where the displacement current is
neglected, therefore the current density is defined as
J = ∇ × B. The charge neutrality assumption makes
Poisson’s equation redundant. The condition ∇·B = 0
can be handled by many different mechanisms in the
MPI-AMRVAC code (Keppens et al. 2003; Teunissen &
Keppens 2019). Non-ideal contributions to the electric
field are the Ohmic resistivity, implemented as a source
term and the Hall effect, specified by the Hall velocity,

vH = −νH
ρc

J . (10)

The resistivity and Hall coefficients, η and νH, respec-
tively, are input parameters. Although implemented,
the tests we consider in this paper all relate to ideal
two-fluid charge-neutral settings, where the Hall and
resistivity contributions are ignored, i.e. η = 0 = νH.

The equations in this paper, including the above
Eqs. (1)-(7), are written in a non-dimensional unit sys-
tem, where the magnetic permeability µ0, the Boltz-
mann constant kB and the hydrogen mass mH are ab-
sorbed in the units and do not appear explicitly. By
defining three characteristic quantities (units), for ex-
ample number density (n̄), temperature (T̄ ) and length
(x̄), the units for all other quantities which appear in
Eqs. (1)-(7) are calculated as,

ρ̄ = mH n̄ , p̄ = kBn̄T̄ , v̄ =

√
p̄

ρ̄
, B̄ =

√
µ0p̄ , t̄ =

x̄

v̄
.

(11)

The values of n̄, T̄ and x̄, as well as of µ0, kB and mH

depend on the application considered and the choice
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of physical unit system, and both “SI” or “cgs” choices
are available in MPI-AMRVAC.

The temperature is defined by the ideal equation of
state,

Ti = µipi/ρi , for i=n,c . (12)

We assume a purely Hydrogen plasma, and together
with the charge neutrality assumption, this implies
that the non-dimensional mean molecular weights are
fixed to µn = 1 and µc = 0.5.

Heat conduction (which would be isotropic for neu-
trals and anisotropic for charges, as implemented in the
code) is neglected for all tests presented in this paper,
and is hence not listed in the above equations. The
adiabatic constant γ is an input parameter and for the
tests presented here is considered to be γ = 5/3.

2.2. Collisional coupling terms

The RHS source terms Sn,Rn andMn that balance ex-
actly between neutral and charged species encode both
elastic collisions and inelastic contributions (through
ionization/recombination). The elastic collisions be-
tween charges and neutrals include collisions between
ions and neutrals and collisions between electrons and
neutrals, therefore the collisional parameter α is de-
fined so that: ρeνen + ρiνin = ρnρcα, where νen and
νin are the collision frequencies between electrons and
neutrals and between ions and neutrals, respectively.
The collision frequency between particles α and β,
as defined by Eq. (A.1) in Appendix A, is different
from the collision frequency between particles β and
α; ναβ 6= νβα, but ραναβ = ρβνβα. Because me � mi,
we consider that ρi = ρc and we neglect the collisions
between neutrals and electrons. This makes the colli-
sional parameter simply α = νin/ρn and its full func-
tional dependence is given by Eq. (A.3). In the expres-
sion of the collisional parameter α the number density
cancels out and α depends weakly on the plasma pa-
rameters, i.e. on the square root of the temperature
average between neutrals and charges. For this reason
and for easier comparison with analytical or other re-
sults present in the literature, for the cases presented
in this paper we will assume α uniform and constant
and its value will vary throughout the simulations.

The inelastic collisions are related to ionization
and recombination processes and the functional depen-
dence of the ionization/recombination rates Γion, Γrec

is given in Appendix by Eqs. (A.5) and (A.4), respec-
tively. None of the tests discussed make use of these
inelastic collision terms, but they are implemented and
reported here for completeness and for later reference.
Using the above definitions, the collisional terms in the
continuity, momentum and energy equations are:

Sn = ρcΓ
rec − ρnΓion ,

Rn = ρcvcΓ
rec − ρnvnΓion + ρnρcα(vc − vn) ,

Mn =
1

2
ρcv

2
cΓrec − 1

2
ρnv

2
nΓion +

1

2
(vc

2 − vn2)ρnρcα

+
1

γ − 1

(
ρcTcΓ

rec − ρnTnΓion
)

+
1

γ − 1
(Tc − Tn)ρnρcα . (13)

Note in particular how the momentum exchange via
elastic collisions scales with the local velocity differ-
ence, and how the related energy exchange scales with
squared velocity differences and the temperature dif-
ference.

2.3. Time integration strategy

The collisional terms Sn, Rn andMn in the continuity,
momentum and energy equations might be stiff when
the collisions are very frequent. For example, the mo-
mentum equations, considering only the update due to
elastic collisions can be written as

∂(ρnvn)

∂t
= νin(ρcvc)− νni(ρnvn) ,

∂(ρcvc)

∂t
= νni(ρnvn)− νin(ρcvc) , (14)

where νin and νni are the collision frequencies between
ions and neutrals and between neutrals and ions, re-
spectively, which equivalently write as

νin = αρn , νni = αρc . (15)

An explicit implementation of the above terms at the
RHS of Eqs. (14) is stable if the timestep

∆t ≤ 1

max(νin, νni)
. (16)

In the solar atmosphere, the very large densities in the
lower photosphere and the bottom part of the chromo-
sphere would impose very small timesteps in an explicit
implementation. In order to avoid this limitation, the
collisional terms are evaluated implicitly, so the over-
all time-stepping employs an implicit-explicit or IMEX
scheme, similarly to Popescu Braileanu et al. (2019a).
The modular structure of the MPI-AMRVAC code per-
mits the use of its various, already implemented third,
second and first order IMEX schemes. In this paper,
we will use the IMEX-ARS3 scheme from Ascher et al.
(1997).

Within each implicit substep of an IMEX vari-
ant, we handle the source evaluations in pairs, and
the discussion below has pairs U = (ρn, ρc) or U =
(ρnvn, ρcvc) and U = (etotn , etotc ). The implicit update
of the collisional terms is then based on the fact that
the source term for ∂U/∂t = P(U) is proportional
to the variables exactly, i.e. P = Ĵ · U. Because of
the weak dependence of the Jacobian matrix Ĵ on the
variables which evolve in time, Ĵ can be assumed con-
stant during a timestep. This linearization in time has
been considered in many previous implementations by
Smith & Sakai (2008); Tóth et al. (2012); Hillier et al.
(2016); Popescu Braileanu et al. (2019a).

In a multistep semi-implicit scheme the implicit up-
date by a partial stepsize β∆t can be written as:

Uk+1 = T + β∆tP(Uk+1) , (17)

where T represents the pair of variables after their ex-
plicit update. If Ĵ is assumed constant during the step,
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taking into account that J21 = −J11 , J22 = −J12,
Eq. (17) becomes an explicit update:

Uk+1
1 = T1 + ∆U ,

Uk+1
2 = T2 −∆U , (18)

where

∆U = β∆t
J11T1 + J12T2

1 + β∆t(J12 − J11)
. (19)

Therefore, the implicit update can be summarized as:

Uk+1 = T + f(β∆t, J12 − J11)P(T) , (20)

where

f(β∆t, J12 − J11) =
β∆t

1 + β∆t(J12 − J11)
. (21)

In this generic description, the elements of the matrix
Ĵ are different for each set of variables: density, mo-
mentum, kinetic energy and internal energy:
Continuity:

J11 = −Γion; J12 = Γrec . (22)

Momentum:

J11 = −αρc − Γion; J12 = αρn + Γrec . (23)

Kinetic energy:
the same as for the momentum.
Internal energy:

J11 = µn (−αρc − Γion) ; J12 = µc (αρn + Γrec) .

(24)

Because of different mean molecular weight for neutrals
and charged particles, the Jacobian for the kinetic en-
ergy is different to the Jacobian for the internal energy
and the update of the total energy considers the update
of kinetic and internal energy separately.
Instead of obtaining the analytical solution of the im-
plicit update starting from Eq. (17), Hillier et al. (2016)
obtains the analytical solution of the following system
of two equations:

dU
dt

= P(U)

leading to:

∆U =
J11T1 + J12T2
J12 − J11

{1− exp [−(J12 − J11)β∆t]} ,

(25)

which written in the form defined by Eq. (20) gives

f(β∆t, J12 − J11) =
1− exp [−(J12 − J11)β∆t]

J12 − J11
. (26)

The function f defined by Eq. (21) is equal to f defined
by Eq. (26) for very small values of the timestep ∆t.
We implemented both variants of the implicit update
through the generic function f(β∆t, J12 − J11), but
only the form described by Eq. 21 is considered in the
tests presented here.

3. Results

In order to test our new implementation of the two-
fluid model in MPI-AMRVAC we ran a large series of test
simulations. These are presented below, where we go
from standard error quantifications, to tests demon-
strating the advantages offered by an AMR implemen-
tation.

3.1. Linear waves in uniform media

We first ran simulations of linear acoustic and Alfvén
waves in a uniform medium, similarly to Popescu
Braileanu et al. (2019a). We use the splitting strategy
as explained in Yadav et al. (2022) and similar to that
used by the Mancha3D/Mancha3D-2F code (Felipe
et al. 2010), where the equations are solved for (up to
nonlinear) perturbations in density, pressure (energy)
and magnetic field. We show here the convergence tests
of Alfvén waves in a 1.5D domain (the perturbation
and gradients are in the z-direction only, but the vec-
tors have two components: x and z), where the values
corresponding to the uniform background are:

pn0 = 20 , pc0 = 10 , ρn0 = 20 , ρc0 = 10 , Bz0 = 0.4 .

(27)

The domain is between z = 0.5 and z = 2.1. Af-
ter linearizing the two-fluid equations (see Eqs. (36)
in Popescu Braileanu et al. 2019a), where only elastic
collisions in the momentum equations are considered,
assuming solutions of the form

{vnx, vcx, Bx1} = {Vn, Vc, B1}exp[i(ωt− kz)], (28)

the dispersion and polarization relations are

−ρc0ω3 + iαρc0(ρc0 + ρn0)ω2 +Bz0
2k2ω

−iαρc0Bz0
2k2 = 0 ,

B1 = −kBz0Vc
ω

, Vn =
αρn0ρc0Vc

iρn0ω + αρn0ρc0
. (29)

The above Eqs. (29) are Eqs. (38) and (39) from
Popescu Braileanu et al. (2019a), now written in non-
dimensional units. We choose k corresponding to 5
wavelengths in the domain and the amplitude of the
velocity of charges being a fraction of 10−3 of the back-
ground Alfvén speed, so that the waves are in a linear
regime. The analytical solution calculated using these
values in the above Eqs. (29) is used as initial condition
for the simulations. The boundary conditions are pe-
riodic. We considered both weak and strong coupling
regimes, where we varied from α = 10−1, compared to
α = 104.

We show here the results only for the semi-implicit
temporal scheme IMEX-ARS3, used in all the other
tests presented in the paper. We adopt various com-
bination of flux schemes (TVDLF, HLL) and limiters
(minmod, cada3, woodward, mp5). The Butcher table
of the IMEX-ARS3 scheme, which shows the explicit
updates, as well as the implicit updates during a full
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timestep is (Ascher et al. 1997),

δ δ 0 δ
1− δ δ − 1 2(1− δ) 0 1− 2δ δ

0 1/2 1/2 0 1/2 1/2

with δ =
3 +
√

3

6
. (30)

In theory, this IMEX-ARS3 scheme is third order ac-
curate in time (Ascher et al. 1997), meaning that the
numerical error introduced in each timestep is propor-
tional to ∆t3, where ∆t is the timestep used. This
IMEX scheme has in practice three explicit, and two
implicit stages.

Fig. 1. Error calculated as from Eq. (31) as a function of
spatial (and temporal) resolution. N represents the number
of points used to discretize the domain. The points in the
plot correspond to N =4096 (=Nmax),2048,1024,512,256.
Different combinations of flux schemes (TVDLF, HLL) and
limiters (minmod, cada3, woodward, mp5) are shown by
different curves, some of them overlap and are grouped as
indicated in the legend.

We first run simulations where we vary both
temporal (∆t) and spatial (∆x) resolution by vary-
ing the number of points of the domain and let-
ting ∆t to be set by the CFL condition. For
N ∈ {256, 512, 1024, 2048, 4096}, ∆tN ∈ {3.872 ×
10−3, 1.936 × 10−3, 9.68 × 10−4, 4.84 × 10−4, 2.42 ×
10−4}, Figure 1 shows the numerical error computed
from

E(N) =
N

max
i=1
|uN [i]− uan [i]| , (31)

as a function of Nmax/N . The variable u considered
in the calculation was vcx, where uN and uan are the
numerical and analytical solution, respectively, cal-
culated at final time tF = 1. Therefore, the error
quantified here is the global truncation error (GTE).
The temporal GTE is the error accumulated after a
(large) number of timesteps, which is proportional to
1/∆t, so that for a scheme with order of accuracy p,
GTE(∆t) ∝ (∆t)p−1. The expression from Eq. (31),
representing the maximum error in the spatial domain,
also accounts for the accumulated numerical error due

to the spatial discretization. The values of the slopes
in Figure 1 indicate an order of accuracy around 2.
We can see that the normally more diffusive “min-
mod” limiter has a higher convergence rate than the
other limiters (“cada3”, “mp5”, “woodward”), but has a
larger error. For the same combination of flux schemes
and limiters, the error is smaller for smaller values of
the coupling parameter α (i.e. our bright green curve
lies below the blue curve, just like the brown curve
is always below the red). The convergence rate (the
slope of the curve) is slightly different for the differ-
ent values of α, and this rate is slightly larger for the
smaller value of α for all the combinations, except for
those with a “woodward” limiter, where the conver-
gence rate is slightly smaller for the smaller value of
α. We are led to conclude that the error we show in
Figure 1 is dominated by a spatial discretization er-
ror (since a finite volume spatial discretization choice
with TVDLF/minmod is at best second order) and we
try to find the accuracy of the temporal discretization
only.

In order to calculate the order of accuracy of the
temporal scheme only, we now keep the spatial reso-
lution fixed N = 4096 and vary the timestep using a
sequence which starts with the value determined by
the CFL condition and then, successively, use smaller
timesteps by dividing the previous one by a factor of
2, i.e. use the sequence ∆tj ∈ {2.42 × 10−4, 1.21 ×
10−4, 6.05× 10−5, 3.025× 10−5, 1.5125× 10−5} for j ∈
{0, 1, 2, 3, 4}. As we found earlier that the spatial dis-
cretization error may dominate, the calculation of the
error using the analytical solution might not converge
properly. For this reason, we now calculate the order
of accuracy by using only the successive numerical so-
lutions, where the spatial discretization error cancels
out. We quantify this order as p, where: 1

p =

〈
log2


√∑N

i=1 (uj [i]− uj+1 [i])
2√∑N

i=1 (uj+1 [i]− uj+2 [i])
2

〉
j=0,1,2

.

(32)

This also eliminates the differences between the nu-
merical and analytical solution due to nonlinear terms
present in the equations solved numerically. Table 30
shows values of p for the same combinations of flux
schemes/limiters from Figure 1. The “minmod” limiter

Table 1. Quantity p calculated from Eq. (32) for the
IMEX-ARS3 scheme.

α = 10−1 α = 104

TVDLF/minmod 2.36 2.41
TVDLF/mp5 2.77 2.41
TVDLF/cada3 2.74 2.41

TVDLF/woodward 2.76 2.79
HLL/minmod 2.27 2.41
HLL/mp5 2.77 2.41
HLL/cada3 2.74 2.41

HLL/woodward 2.76 2.79

now shows slower convergence, but the dependence on
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α is the same as in the previous calculation. The order
of accuracy of the temporal scheme is larger than 2,
being indeed larger than the order of accuracy of the
spatial scheme.

In summary, the tests showed good convergence, of
order around 2 for the spatial discretization and close
to 3 for the temporal discretization, consistently with
the theoretical estimation. We observed better over-
all convergence and smaller error for weaker coupling
(smaller α, where we varied from α = 10−1, compared
to α = 104), similarly to Popescu Braileanu et al.
(2019a). In the strong coupling regime presented here
(α = 104), if the collisional terms are implemented
explicitly, the timestep is restricted by the collisions,
∆t = 4×10−6, being three orders of magnitude smaller
than the timestep used by a semi-implicit scheme for
a resolution of 256 points, making the use of the semi-
implicit schemes much more efficient.

3.2. Waves through the solar chromosphere

We then run simulations of waves in a gravitation-
ally stratified atmosphere resembling the solar chro-
mosphere. We construct a 1D gravitationally strati-
fied atmosphere for charges and neutrals. The verti-
cal domain is contained between 0.5 Mm and 2.1 Mm.
We use the temperature profile and the number den-
sity of neutrals and charges from the VALC model
(Vernazza et al. 1981) and integrate numerically the
hydrostatic equations. The units chosen for the non-
dimensionalization are: x̄ = 1 Mm, T̄ = 5000 K,
n̄ = 1020 m−3 The value of the collisional parameter
is uniform and constant, and was calculated as a spa-
tial average of the coefficient defined by the expression
from Eq (A.3), and in non-dimensional units it has the
value α = 1.3× 107. The densities drop exponentially
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Fig. 2. Equilibrium density of charges (black solid line)
and neutrals (black dashed line) on the left axis, and tem-
perature on the right axis as a function of height. The
equilibrium temperature is the same for neutrals and the
charges.

with height, thus having different coupling regimes at
the bottom and the top of the domain. Figure 2 shows
the profiles of densities of neutrals and charges on a
logarithmic scale on the left axis and the profile of
the temperature on the right axis. Because the scale
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Fig. 3. Snapshot of a 1D fast magneto-acoustic wave
in a stratified atmosphere (the horizontal z-axis denotes
height). Top panel: vertical velocity of charges (solid black
line) and neutrals (red dashed line). Bottom panel: pertur-
bation of horizontal magnetic field.

height is inversely proportional to the mean molecular
weight, the scale height of charged particles is twice
the scale height of the neutral species, therefore the
density of the neutrals drops (twice) faster than that
of the charges, this being observed also in the density
profiles. We choose a uniform horizontal magnetic field
with magnitude of ≈ 15 G, so that the magnetic pres-
sure is equal to the neutral pressure at the middle of
the vertical domain, the setup being very similar to the
setup described by Figure 1 of Popescu Braileanu et al.
(2019b) for their “S” magnetic field profile. We used
the same splitting strategy described in Yadav et al.
(2022) where the equilibrium densities, pressure and
magnetic field are assumed to obey a split-off (mag-
neto)hydrostatic configuration whose variations with
height are given. The vertical domain between 0.5 Mm
and 2.1 Mm is covered by an uniform grid of 3200
points.

We then use a driver in the bottom ghost cells to
launch a fast magneto-acoustic wave with a period of
5 seconds. The perturbation represents a full linear
eigenfunction in all the variables, according to the lo-
cal analytical solution. The amplitude of the velocities
is equal to a fraction of 10−3 of the sound speed at
the base of the atmosphere, so that the waves start in
the linear regime. Collisions damp these waves in the
upper part of the atmosphere. This can be clearly seen
in Figure 3, showing velocities and horizontal magnetic
field perturbation as a function of height. In the ideal
MHD approximation, in a stratified atmosphere where
density decreases exponentially, the amplitudes of ver-

Article number, page 7 of 18



A&A proofs: manuscript no. main

tical velocity and of the perturbation of the original
uniform magnetic field should grow exponentially. We
observe this amplitude growth in the lower part of the
atmosphere where coupling is strong, but they start to
decrease after z ≈ 1.4 Mm. We also observe this de-
coupling as a difference in velocity of charges and neu-
trals in the upper part, with slightly larger propagation
speed for the charges. Our result is similar to the result
obtained by Popescu Braileanu et al. (2019b), panel (a)
of their Figure 4.

3.3. Wave interactions throughout the chromosphere

We then consider a 2D case of the above 1D wave
problem, where the magnetic field is still taken to
be uniform, but this time inclined with respect to
the vertical direction. Its magnitude is still adopted
as in the previous 1D case. We now launch two fast
magneto-acoustic waves with a gaussian shape and dif-
ferent inclination, that will propagate upward and in-
teract throughout the chromosphere. This is the same
experiment that was recently considered by Popescu
Braileanu & Keppens (2021) in a single fluid MHD ap-
proximation, where partial ionization effects were in-
troduced through ambipolar diffusion. We use the same
period of 5 seconds, but the amplitude of the wave at
the base of the atmosphere is now larger by a factor
of 100 than in the previous 1D case, such that non-
linear effects become important. Our new results, now
obtained in the two-fluid approximation, are shown in
Figure 4 and can be directly compared to Figure 17
from Popescu Braileanu & Keppens (2021). We show
velocity components projected perpendicular (top) or
parallel (bottom) to the in-plane inclined field, for the
neutrals (left) and in terms of decoupling. The neutrals
can move across the magnetic field lines, contrary to
the charged particles. Thus, the decoupling in velocity
between charges and neutrals across the field lines is
much larger than the decoupling along the field lines
and this can be seen by comparing our top-right panel
to our bottom-right panel of Figure 4.

Even though the results shown in Figure 4 are at
an earlier time that those of Figure 17 from Popescu
Braileanu & Keppens (2021), we can see good agree-
ment for the velocity profiles. The ambipolar diffusion-
based simulation described in Popescu Braileanu &
Keppens (2021) is actually more affected by numeri-
cal dissipation than the current two-fluid cases shown
in Figure 4. This is because the simulation presented
here uses AMR with five levels of refinement with a
base resolution of 1600×400 in zx compared to the one
shown in Popescu Braileanu & Keppens (2021) where
a uniform grid of resolution 3200×800 was used. Thus,
the effective resolution (i.e. 25600×6400 for the zx do-
main) is 8 times higher than that considered in Popescu
Braileanu & Keppens (2021). The variable used for
the dynamic refinement criterion is the perturbation
in neutral density, for which an instant is shown in
the left panel of Figure 5. We overplot here the grids
and observe that the finer grids are properly located at
regions with larger gradient in the neutral density per-
turbation. The grid adjusts and evolves dynamically,
and this aspect is shown in the right panel of Figure
5, quantifying the grid coverage by the five levels of

AMR as a function of time. This grid coverage is such
that the sum over all levels always reaches unity, i.e.
our hierarchical grid covers the entire domain. We can
observe that the base level 1 (“L1”) coverage decreases,
while level 5 (“L5”) increases during the simulation,
having a value close to 0.3 at the end of this simulation.
The fact that the coverage for the highest refinement
level (“L5”) remains much lower than unity confirms
that the refinement is done only in specific regions,
where needed as specified by our refinement criterion.
Therefore the computational cost of this AMR run is
obviously much lower than a uniform grid run with the
same cell size as our highest grid level.

3.4. Two-fluid shock tube

Here, we repeat the experiment of the slow two-fluid
shock in 1.5D geometry done by Snow & Hillier (2019),
summarized below. The setup models a shock, which
could be produced by reconnection, where the interface
of discontinuity is considered to be at the bottom of
the physical domain, x = 0. The top of the physical
domain is located at x = 4 × 103. The left and right
states of the MHD variables are (Snow & Hillier 2019):

(ρ, vx, vy, p, Bx, By)L = (ρ0, 0, 0, p0, Bx0,−By0) ,

(ρ, vx, vy, p, Bx, By)R = (ρ0, 0, 0, p0, Bx0, By0) , (33)

where

ρ0 = 1 , Bx0 = 10−1 , By0 = −1 , p0 =
1

2
(B2

x0 +B2
y0) . (34)

The left state is specified in the bottom ghost cells by
the boundary conditions. Symmetric boundary condi-
tions imply zero gradient and keep the values of the
density, pressure, y-component of the velocity and x-
component of the magnetic field the same at the left
and the right of the interface of discontinuity. Bx is uni-
form and constant throughout. For the other variables,
the x-component of the velocity and y-component of
the magnetic field at the bottom boundary are anti-
symmetric. In a 2D setup, this reversal of the magnetic
field represents a local current sheet, which is further
liable to reconnection. The inflow (x-component) ve-
locity towards the current sheet is zero. In the 1.5D
setup done here, we only focus on the outcome of the
corresponding Riemann problem. The top boundary
conditions are symmetric for all the variables.

A MHD uniform setup is generally transformed into
a two-fluid setup:

ρc =
ξi

ξi + 1
ρ , ρn = 1

ξi+1ρ ,

pc =
2ξi

2ξi + 1
p , pn = 1

2ξi+1p ,

vc = vn = v , (35)

where ξi is the ionization fraction. We used the same
value ξi = 0.1 from Snow & Hillier (2019) for this two-
fluid setup.

Figure 6 can be directly compared to Figure 4 of
Snow & Hillier (2019), and shows velocities, By varia-
tion and pressure variation at time t = 2500. Detailed
comparison shows a very good agreement. Our figure
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shows results for a pure MHD run (black solid lines)
as they compare to two-fluid runs of different overall
resolutions. In this test we demonstrate the effect of
resolution and did the test using uniform grids of 8192
and 16384 points. Visually the solutions for these two
resolutions superpose, except for a small undershoot in
the charged fluid horizontal velocity for lower resolu-
tion, which is marked in the top-left panel of Figure 6.
We also run simulations using AMR with a base reso-

lution of 2048 points and four levels of refinement, thus
having the same effective resolution as the simulation
with 16384 points in a uniform grid. We observe that
AMR and uniform grid results are visually identical,
including the undershoot detail shown in our top-left
panel. However, the computational cost is of course
smaller when refinement is used. The total computa-
tional time for the base resolution of 2048 points and
four levels of refinement is half that of the case of the
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Fig. 6. Self similar solution for the slow MHD and two-fluid shock. Top left: x-velocity; Top right: By; Bottom left:
y-velocity; Bottom right: pressure. Comparison between runs with different resolutions: uniform grid with 8192 points
(solid lines, labeled “8192p”), uniform grid with 16384 points (dashed lines, labeled “16384”), and AMR with 2048 points
base resolution and 4 refinement levels (dot-dashed labeled “2048p,4l”). The quantities corresponding to the charges
and the magnetic field are plotted with solid blue (uniform, 8192 points), dashed violet (uniform, 16384 points) and
dash-dotted gray (AMR, 2048 points base resolution, 4 levels); and for the neutral fluid with solid red (uniform, 8192
points), dashed yellow (uniform, 16384 points) and dash-dotted orange (AMR, 2048 points base resolution, 4 levels). The
reference MHD quantities are shown with solid black lines. In the bottom left panel the sum of pressures of charged and
neutral fluids is also shown as indicated in the legend. The black arrow in the top left panel indicates the only location
where the numerical solution changes visibly for a change in resolution.

uniform grid with 16384 points: 97.09 s compared to
196.587 s, both simulations being run under the same
conditions.

3.5. Shock tube in 1.75D

Collisions affect the scales below the mean free path be-
tween neutrals and charges, with their effect being sim-
ilar to diffusivity for hydrodynamic scales larger than
the collisional scale. Here, we test a shock tube prob-
lem that already poses a challenge to any modern MHD
code, as introduced by Torrilhon (2003) and mentioned
in Chapter 20 of Goedbloed et al. (2019) where it is
shown that modern shock-capturing discretization con-
verge to a wrong solution for a resolution lower than
several 1000 grid points. For larger resolutions the so-
lutions converge to the true and unique solution con-
taining rotational discontinuities (rather than showing
a compound wave structure). The domain is between
x = −1 and x = 1.5 and is covered by an uniform
grid with different resolutions, as specified below. The
initial condition in the MHD approximation are:

ρL = 1 , ρR = 0.2 , pL = 1 , pR = 0.2 ,

ByL = 1 , ByR = cos(3) , BzL = 0 , BzR = sin(3) ,

BxL = BxR = 1 , (36)

where subscripts L and R indicate the regions at the
left (x < 0) and right (x > 0) of the interface located at
x = 0. The velocities are zero initially. The boundary
conditions are symmetric for all the variables. The top
panels of Figure 7 can be compared to Figure 20.14
from Goedbloed et al. (2019), where we show pure
MHD solutions at time t = 0.5, obtained with different
resolutions. We can observe that, indeed, the simula-
tion which used a resolution of 800 points does not
capture correctly the region around x = −0.25, but a
resolution of 4096 points gives results similar to the
expected analytic solution of this Riemann Problem.
Further increasing the resolution to 8192 and 16384
points does not show visible changes in the numerical
solution.

We then run the same test with the two-fluid model,
using Eqs. (35) and ξi = 0.1 to setup all states initially.
Here, we keep the same resolution in all the two-fluid
simulations, namely 4096 points, which showed the cor-
rect numerical solution in the MHD case, but vary the
value of the collisional parameter α. These results are
shown in the bottom panels of Figure 7, along with the
reference MHD solution. We observe that for larger val-
ues of α the two-fluid solution converges to the MHD
solution. For both largest values of α considered here,
α = 108 and α = 1064, the two-fluid solution is al-
most indistinguishable from the MHD solution. For the
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smaller values of α, α = 102 and α = 104, the two-
fluid solution resembles the MHD solution of the run
with 800 points, which showed the (erroneous) com-
pound structure. Therefore in this regime, it seems that
the incomplete collisional coupling has the same effect
as numerical diffusivity. The mean free path between
charges and neutrals and between neutrals and charges
could be approximated by:

λin =
cf
νin

, λni =
cf
νni

,where cf =
√
c2A + c2s , (37)

with the collision frequencies νin and νni defined in
Eq (15), and cs and cA being the sound and Alfvén
speed, respectively, calculated using the total pres-
sure and density. For the ionization fraction considered
here, the mean free path between neutrals and charges
is larger than that between charges and neutrals. The
hydrodynamical scale has the same order of magnitude
as the length of the horizontal domain, i.e. Lx = 2.5.
For the value of α = 102 the mean free path between
neutrals and charged particles is two orders of magni-
tude smaller than Lx = 2.5, suggesting that neutrals
and charges are well coupled. In this regime, the in-
complete coupling resembles numerical diffusivity. In

weaker coupling regimes, however, the two-fluid solu-
tion might be very different from the MHD solution.

3.6. Shock-interactions in 2D: Orszag-Tang in two-fluid
settings

When the coupling regime is weaker, i.e. the collisional
scales become similar or larger than the hydrodynami-
cal scales, as the neutrals do not feel the magnetic field,
the two-fluid solution might be very different from the
MHD solution for both neutrals and charges. In or-
der to see how the code behaves for different regimes
of collisional coupling in simulations where 2D shock
fronts form spontaneously and interact, we do simula-
tions of the compressible version of the Orszag-Tang
test (Orszag & Tang 1979; Picone & Dahlburg 1991).
The setup for the MHD approximation on a unit square
domain is

ρ0 =
25

36π
, p0 =

5

12π
,

Bx0 = −B0sin(2πy) , By0 = B0sin(4πx) ,

where B0 =
1√
4π

,

vx0 = −sin(2πy) , vy0 = sin(2πx) , (38)
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Fig. 8. Snapshots of densities for the two-fluid model
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Fig. 9. Same as Figure 8, for α = 1.

is extended to a two-fluid setup by using Eqs. (35) and
the ionization fraction ξi = 0.5. We used a base reso-
lution of 5122 and 3 levels of refinement. The variable
used in the refinement criterion is the magnitude of
the decoupling in velocity. Figure 8 shows snapshots of
charged (left) and neutral (right) density for the case of
a strongly coupled regime where α = 103, at two differ-
ent times. At the ionization fraction chosen, the mean
free path between charges and neutrals is the same as
the mean free path between neutrals and charges, and
for the value of α = 103, λin = λni = 5.28×10−3, much
smaller than the length of the domain. We clearly ob-
serve similar structures in neutral and charged densi-
ties, even up to the very nonlinear times where islands
form due to numerical reconnection on the strong and
localized current sheets (see the snapshots at t = 0.9
in Fig. 8). This result is very similar to a pure ideal
MHD run.

On the other hand, in a weak coupling regime where
we took α = 1 (now the mean free path becomes
λin = λni = 5.28, larger than the length of the do-
main, though of the same order of magnitude), the
neutrals and charges evolve very differently and the
density maps for both species are also very different

than in the pure MHD case. This can be seen in Fig-
ure 9, where the densities of charges and neutrals are
shown for the same moments of time as for the previ-
ous case. The magnitude of the decoupling in velocity
between neutrals and charges is much smaller in the
strong coupling regime (α = 103) than in the weak
coupling regime (α = 1), as expected and quantified in
Figure 10.

0.25 0.50 0.75
x

0.25

0.50

0.75

y

t=0.9

0.0

0.2

0.4

0.6

0.8

1.0

|v c
v n

|

Fig. 10. Magnitude of the decoupling in velocity between
charges and neutrals. Left: α = 103, Right: α = 1. The col-
ormap and the normalization are the same for both images.

3.7. Corrugation instability

Differently to the Orszag-Tang test presented earlier,
the charged fluid might evolve similarly to the plasma
in the MHD assumption, even if the collisional coupling
is weak. A very demanding numerical experiment is the
simulation of a perturbed 2D MHD slow shock front,
leading in most of the cases to the corrugation insta-
bility (Stone & Edelman 1995; Snow & Hillier 2021).
We use a background medium similar to that used by
Snow & Hillier (2021) for parallel shocks. We use sub-
script 1 for downstream variables (x < 0) and subscript
for 2 upstream variables (x > 0), where we exploit the
frame of reference of the shock front, fixed at the lo-
cation x = 0. Given upstream quantities, we can get
downstream quantities from the flux conservation laws,
assuming a stationary solution. We use the same val-
ues given in Table A1 in Snow & Hillier (2021) for the
left and right states with respect to interface of dis-
continuity. The 2D x − y domain [−1.5, 1] × [0, 0.1] is
covered by 1024×256 points as base resolution and we
used 4 levels of refinement. The numerical values for
the quantities upstream (2) and downstream (1) are
(Snow & Hillier 2021),

(ρ, vx, vy, p, Bx, By)2 = (1,−2, 0, 0.6, 3.464, 0) ,

(ρ, vx, vy, p, Bx, By)1 = (2.286,−0.875, 0, 2.85, 3.464, 0) , (39)

This planar shock is perturbed by its encounter
with a controlled density perturbation. Therefore in
the initial condition, the density upstream becomes
ρ2 + δρ(x, y). This perturbation in the density is lo-
cated upstream, only in the region 0 ≤ x ≤ 1:

δρ = A sin (πx) cos
(

2πy

0.1

)
. (40)

We use the same amplitude A = 1 as Snow & Hillier
(2021), so that the simulation enters the non-linear
regime from the beginning, while Stone & Edelman
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Fig. 11. Time sequence for quantities seen in parallel shocks undergoing corrugation instabilities. Top left: Density in
the MHD simulation. Top right: Density of charges in the two-fluid simulation. Bottom left: Density of neutrals in the
two-fluid simulation. Bottom right: (Out-of-plane component of) Vorticity of neutrals in the two-fluid simulation. The
two-fluid simulation used a value of α = 10.

(1995) used the value A = 10−4 in order to study the
linear phase. In order to avoid non-linear interaction
between different modes, we used a single-mode cor-
responding to one wavelength. The pure MHD result
from Stone & Edelman (1995) shows that the instabil-
ity grows faster for smaller modes. As we used a smaller
domain, compared to Snow & Hillier (2021), we expect
the instability to grow faster than in their case.

The two-fluid setup is obtained from the MHD
setup using Eqs. (35) and ξi = 0.9. The value of the
collisional parameter is uniform and constant, α = 10.

The mean free path between ions and neutrals, cal-
culated according to Eq. (37), λin ≈ 3.6, is larger
than the mean free path between neutrals and ions,
λni ≈ 0.4, both being larger than the size of the domain
(in the direction y, which is horizontal in Figure 11),
meaning a weakly coupled regime.

Figure 11 shows the numerical results of the fluid
density obtained in the MHD assumption (top left
panel) and the charged fluid density in the two-fluid
approximation (top right panel). Bottom panels show
the density (bottom left panel) and the vorticity of
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the neutrals (bottom right panel). We observe that the
charged fluid in the two-fluid simulation evolves sim-
ilarly to the MHD case, although some of the struc-
tures are smoothed out by collisions. In the neutral
fluid (right panels), we notice that secondary Kelvin-
Helmholtz instabilities (KHI) form as the perturbation
advances towards the negative region of the x-domain.
For this reason we plotted the vorticity of the neu-
trals, and indeed we see non-zero vorticity consistently
with the locations where the vortices in the density are
observed. Similarly to Snow & Hillier (2021), the neu-
trals seem to stabilize the corrugation instability and
present features as shock channels. Differently from the
simulations of Snow & Hillier (2021), we used smaller
wavelength of the perturbation, which grows faster,
therefore we analyzed the snapshots at an earlier time,
while the perturbation was still travelling through the
physical domain, producing KHI.

As smaller scales grow faster, we do see small scale
corrugation instabilities due to numerical noise appear
along the deformed shock front. These secondary insta-
bilities are not seen in the original two-fluid simulations
of parallel shocks of Snow & Hillier (2021). As we used
very high resolution and no artificial dissipation, we
claim these are physically relevant and further conse-
quences of these finest-scale structures could become a
subject of further study.

3.8. Two-fluid Kelvin-Helmholtz evolutions

As stated above, the evolution of the parallel shock
corrugation showed KHI in the neutrals. Here, we now
turn to pure KHI studies, as done recently in a two-
fluid setting. We do simulations of 2D KHI using the
same setup as Hillier (2019b). The domain is comprised
between −1.5 and 1.5 in the horizontal (aligned with
the main shear flow) direction and between −0.75 and
0.75 in the vertical direction. We used AMR with a
base resolution of 2048 × 1024 with 4 levels of refine-
ment, thereby reaching the same effective resolution as
the (extremely high resolution) simulations of Hillier
(2019b). We used the IMEX-ARS3 as temporal scheme
and the HLL method for the calculation of the fluxes
(Toro 1997). The condition ∇ · B = 0 is ensured by
the parabolic cleaning method (Marder 1987; Keppens
et al. 2003) specified by the value “linde” for the param-
eter typedivbfix. This method adds non-conservative
source terms in the induction and charged fluid energy
equations, which diffuses the divergence of the mag-
netic field error at a maximal rate.

The background in the MHD approximation is:

ρ1 = 1 , ρ2 = 1.5 ,

vx1 = −1.5

2.5
∆V , vx2 =

1

2.5
∆V ,where ∆V = 0.2 ,

β = 2× 102 , p =
1

γ
. (41)

The subscripts 1 and 2 here represent quantities below
(y < 0) and above (y > 0) the sharp shear flow inter-
face located at y = 0. The initial magnetic field (like
the pressure p) is uniform and has only a horizontal
component Bx =

√
2p/β. We then perturb the planar

interface with a small y-velocity, being composed of 32

modes with random amplitude in [−A,A] and phase in
[−π2

π
2 ], where

A = 10−3

√
γ
p

ρ1
. (42)

This represents a very subsonic and linear, but still
somewhat randomized, perturbation. This MHD-like
initial condition is then transformed to a two-fluid ini-
tial condition by using Eqs. (35) and the ionization
fraction ξi = 10−2.

The limit of infinite collisional scale is the case when
the collisional parameter α = 0. In this fully uncoupled
case, only the neutrals will evolve as for the charges
the scales considered are smaller than the scale where
the tension by the magnetic field stabilizes the KHI.
Indeed, in the ideal MHD assumption, the horizon-
tal magnetic field suppresses the KHI (see Eqns. (205)
or (15) in Chandrasekhar 1961; Hillier 2019b, respec-
tively) if:

(vx1 − vx2)2 ≤ 2B2
x(ρ1 + ρ2)

ρ1ρ2
. (43)

Using the values from Eq. (41) in the above Eq. (43),
the value of the right hand side is of the same order of
magnitude, but slightly smaller than the value of the
left hand side and this condition is not fulfilled, so the
MHD case is unstable. In the uncoupled case, however,
the density of interest should be replaced by the value
of the charged fluid density only, and for the very small
ionization fraction considered here, the value of the
right hand side is then almost two orders of magnitude
larger than left hand side. Hence, the magnetic field
suppresses the instability in the charged fluid.

Figure 12 shows two snapshots of the neutral den-
sity in the non-linear stage of the instability, in the fully
uncoupled case. During the non-linear stage of the in-
stability large vortices form because of the inverse cas-
cade, but there is also a direct cascade when smaller
scales form mainly due to secondary KHI and (centrifu-
gally induced) Rayleigh-Taylor effects, similar to those
seen in Figure 1 from Hillier (2019b). However, we do
not observe such small scale structures as in the simu-
lations of Hillier (2019b). One of the reasons might be
the fact that our initial perturbation contains only 32
modes, differently to the white noise perturbation used
by Hillier (2019b). However, the detailed evolution of
the simulation in the nonlinear phase might be im-
pacted by our choice of the flux limiter: this uncoupled
case used a third order limiter (Čada & Torrilhon 2009)
(specified by the keyword “cada3” in MPI-AMRVAC).

In order to better understand the impact of the
flux limiter, we show results obtained with two differ-
ent limiters when we study the case with a finite mean
free path between charges and neutrals. For this cou-
pled case, we use the value α = 300 as also presented in
Hillier (2019b). As we have seen in previous sections,
for cases which had similar hydrodynamic scales, this
value corresponds to a strong coupling regime. Figures
13 and 14 show the density evolution of neutrals and
charges, and the magnitude of the decoupling in veloc-
ity between neutrals and charges for third order lim-
iter “cada3” and a fifth order limiter (Suresh & Huynh
1997), specified by the keyword “mp5” in MPI-AMRVAC.
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Fig. 12. Time evolution of KHI-unstable neutral density in the uncoupled case (α = 0). The flux limiter used is “cada3”.
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Fig. 13. Time evolution for the coupled case. Top row: neutral density; Middle row: charged density; Bottom row:
magnitude of the decoupling in velocity between neutrals and charges. The AMR grid is overplotted in the bottom row
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flux limiter used is “cada3”.
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Fig. 14. Same as Figure 13 for “mp5” limiter.

In our AMR runs, the magnitude of the decoupling
was used for the refinement criterion and we overplot
the grids as well. We observe how the finer grids nicely
follow the regions with higher values of the decoupling.
The third order limiter has more numerical diffusivity
associated, therefore there is less detail in the density
snapshots corresponding to this simulation. As small
scales are influenced by numerical diffusivity, the non-
linear process of merging of smaller scales to larger
scales happens faster for the “cada3” limiter than for
“mp5”. This can clearly be seen in the earliest snap-
shots corresponding to t = 4.

The main conclusion of Hillier (2019b) was that at
small scales neutrals and charges are decoupled while
they are coupled at large scales. In order to quantify
the degree of coupling between charges and neutrals for
different scales we plot the Fourier amplitudes of the y-
velocity. Figure 15 shows the Fourier amplitudes of the

y-velocity for the two limiters “cada3” and “mp5”. The
amplitudes are averaged in time between t = 4 and t =
46 and also averaged in the vertical direction, restricted
to the region {y| − 0.375 ≤ y ≤ 0.375} shown in the
figures. The Fourier modes are shown as a function
of the mode number n = kLx

2π , where k is the wave
number.

For the adopted low ionization fraction, the mean
free path between neutrals and charges is larger than
the mean free path between charges and neutrals and
we calculate the mode number associated to this scale
as:

ncollni =
Lx
2π

1

λni
(44)

where λni has been defined in Eq. (37). The value
obtained ncollni = 145 is shown by a dotted black
line, and ncollin = 99 × ncollni does not appear in the
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Fig. 15. Fourier amplitudes of the y-velocities. The ampli-
tudes are averaged in height between -0.375 and 0.375, the
same height shown in Figures 13 and 14. The vertical dot-
ted black line located at n = 145 corresponds to the mode
corresponding to the collision frequency between neutrals
and ions, calculated from Eq. 44. For a better visualization
the upper limit on the x-axis is 512 for “cada3” limiter, and
1600 for “mp5” limiter. Both limiters show decoupling at
small scales in the velocity.

plot. We can see in Figure 15 that the curves corre-
sponding to the neutral and charged fluids overlap for
large scales, but diverge for small scales. For the “mp5”
limiter, which has smaller numerical diffusivity associ-
ated, the decoupling appears at smaller scales than for
“cada3”. The largest scales at which the decoupling ap-
pears visually for both limiters are smaller than the
estimated decoupling scale between neutrals and ions,
but larger than the estimated decoupling scale between
ions and neutrals, so the result of the numerical simu-
lations are consistent with this theoretical estimation.
Similarly to Hillier (2019b), the velocity of charges and
neutrals are coupled for large scales and decoupled on
the scales smaller than the mean free path between the
particles of different species.

4. Conclusions

We implemented the full two-fluid (charges-neutrals)
equations in MPI-AMRVAC, an open-source, versatile
code that can be used in many astrophysical contexts.
The implementation shares many aspects with the
Mancha3D-2F code, described in Popescu Braileanu
et al. (2019a), but the MPI-AMRVAC code offers various
advantages, such as being fully dimension-independent
(1D, 2D or 3D), and having the option to use an effi-
cient block-adaptive AMR mesh. The use of an IMEX
scheme, with implicit updates for the collisional terms,
greatly decreases the computational cost in highly col-
lisional regimes. The modular structure of the code
permitted us to use already implemented numerical
discretizations (both temporal and spatial) and par-
allelization algorithms in the two-fluid model, and ex-

ploit the AMR. The use of AMR further reduces the
computational cost, compared to the uniform grid with
the same effective resolution. Many two-fluid codes,
such as those in (Popescu Braileanu et al. 2019a;
Kuźma et al. 2017; Hillier et al. 2016) use uniform grid
implementations. We performed many tests of the code
which showed physically sound results, and were con-
sistent to other results described in recent literature.
The conclusions are summarized below.

– The spatial and temporal convergence tests showed
that the numerical solution converges to the analyt-
ical solution for simulations of Alfvén waves in uni-
form settings. The numerical error was smaller for
smaller coupling parameter α, similarly to results of
Popescu Braileanu et al. (2019a). The IMEX-ARS3
scheme, together with standard shock-capturing
discretizations, achieves high-order (2nd to third
order) convergence.

– The simulations done with our newly implemented
module in the MPI-AMRVAC code reproduced and ex-
tended previous results on waves, shocks and insta-
bilities, first obtained with other codes.

– When the collisional timescales are smaller than the
hydrodynamical timescales (well coupled regime),
the effect of the collisions is similar to diffusivity.
The collisions can damp waves, similarly to the con-
clusion of Díaz et al. (2012); Popescu Braileanu
et al. (2019b) and decrease the growth of the in-
stabilities (Popescu Braileanu et al. 2021a). We ob-
served damping of waves and decoupling in velocity
in 1D (Figure 3) and 2D (Figure 4) setups.

– The numerical results for the 1.75D Riemann prob-
lem (Figure 7) and the well-coupled Orszag-Tang
(Figure 8) results in the two-fluid approach resem-
bled results obtained in the MHD approach with
diffusivity.

– For hydrodynamical timescales similar or smaller
than the collisional timescales (weakly coupled
regime), neutrals and charges might behave differ-
ently. For the RTI studied by Díaz et al. (2014)
and Khomenko et al. (2014b) the hydrodynamic
scale defined by the scale of magnetic cutoff was be-
low the collisional timescale, therefore the neutrals,
which do not feel the stabilizing effect of the mag-
netic field are unstable at these scales. Our simula-
tions that reproduced the simulations of KHI done
by Hillier (2019b), in absence of collisions, showed
that the instability grows in neutrals while the
charged fluid did not evolve because of the magnetic
field. The simulations of Orszag-Tang test in weakly
coupled regime (Figure 9) showed structures in the
density of neutrals and charges very different to the
structures in density obtained in the MHD approx-
imation. However, simulations of the corrugation
instability showed structures in the charged fluid
similar to the structures in the plasma obtained
in the MHD approximation, slightly smoothed out
(top panels of Figure (11)). The structures in the
neutral fluid were different, and we could observe
secondary KHI (bottom panels of Figure 11). The
fact that we showed a two-fluid setup where neu-
trals undergo KHI while charges do not, illustrate
the need for two-fluid modeling to find previously
unexplored, interesting dynamics.
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– Numerical diffusivity makes decoupling between
charges and neutrals appear at larger scales (Fig-
ure 15). When exploiting different limiters in the
numerical reconstruction procedure, the simula-
tions of KHI can be visually (slightly) different,
but statistical properties are similar. The conclu-
sion of Hillier (2019b), that the charges and neu-
trals are decoupled at small scales, but coupled at
large scales, also applies for our simulations.

– Two-fluid effects occur at small scales and the use of
AMR permits very high resolution at a reasonable
computational cost.

Future work would include ioniza-
tion/recombination effects and radiative losses and
address e.g. the secondary instabilities we observed in
the corrugation instability study. For simplicity, or in
order to compare to analytical results or other existing
results, the value of the collisional parameter α was
kept uniform and constant, however more realistic
simulations should consider its dependence on local
plasma parameters, as described by Eq. (A.3). The
viscosity and thermal conductivity might also have an
important role in the study of waves and instabilities
as a mechanism of dissipation and they might be
similar to the two-fluid effects in highly collisional
regime (Popescu Braileanu et al. 2021b).
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Appendix A: Expressions for the collisional
terms

The implementation is the same as done in
Mancha3D-2F code (Popescu Braileanu et al. 2019a)
which uses the SI unit system.

ναβ = nβ
mβ

mα +mβ

√
8kBTαβ
πmαβ

Σαβ . (A.1)

Here, Tαβ = (Tα + Tβ)/2 is the average temperature,
and mαβ = mαmβ/(mα + mβ) is the reduced mass
of particles α and β, and Σαβ is the corresponding
collisional cross-section.

The general expression for α is then the same as
Eq. (A.4) from Popescu Braileanu et al. (2019a), and
reads

α =
min

mn
2

√
8kBTcn
πmin

Σin +
men

mn
2

√
8kBTcn
πmen

Σen , (A.2)

where mn = mH is the Hydrogen mass. When the
collisions with electrons are neglected and considering
mi = mn, the above Eq. (A.2) becomes:

α =
2

mH
3/2
√
π

√
kBTcnΣin, (A.3)

where the collisional cross-section considered here is
Σin = 10−19m2. This is the (dimensional) form for α
used in all our simulations for this paper.

Expressions for Γion and Γrec as functions of ne and
Te are given in Voronov (1997) and Smirnov (2003)
and are the same as Eqs. (A.2), (A.1) from Popescu
Braileanu et al. (2019a):

Γrec ≈ ne√
T ∗
e

2.6 · 10−19 s−1, (A.4)

Γion ≈ neA
1

X + φion/T ∗
e

(
φion
T ∗
e

)K
e−φion/T

∗
e s−1,

(A.5)

where φion = 13.6eV , T ∗
e is electron temperature in eV,

and constants have values A = 2.91 · 10−14, K = 0.39,
and X = 0.232.

Eqs. (A.3), (A.4) and (A.5) show the calculation of
α, Γion and Γrec in the SI unit system. In MPI-AMRVAC,
which uses a convenient non-dimensionalization, the
most straightforward implementation was to first
transform non-dimensional number densities and tem-
peratures into the physical unit system defined for the
simulation (which can be “cgs” or “SI” in MPI-AMRVAC)
by multiplying by their units n̄ and T̄ and further
transform to the SI unit system, if needed. After the
calculation, the resulting quantities with physical SI
units are again transformed to the unit system of the
simulation, then non-dimensionalized by dividing by
the corresponding units: ᾱ = 1/(ρ̄t̄) , ¯Γion = ¯Γrec =
1/t̄.

Notes
1see also Eq. (3) and Table 1 on website:

https://www.csc.kth.se/utbildning/kth/kurser/DN2255/ndiff13/ConvRate.pdf
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